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ABSTRACT

Many images, of natural or man-made scenes often contain
Similar but Genuine Objects (SGO). This poses a challenge
to existingCopy-Move Forgery Detection (CMFD) methods
which match the key points / blocks, solely based on the pair
similarity in the scene. To address such issue, we propose a
novel CMFD method usingScaled Harris Feature Descrip-
tors (SHFD) that preform consistently well on forged images
with SGO. It involves the following main steps: (i) Pyramid
scale space and orientation assignment are used to keep scal-
ing and rotation invariance; (ii) Combined features are ap-
plied for precise texture description; (iii) Similar features of
two points are matched and RANSAC is used to remove the
false matches. The experimental results indicate that the pro-
posed algorithm is effective in detecting SGO and copy-move
forgery, which compares favorably to existing methods. Our
method exhibits high robustness even when an image is oper-
ated by geometric transformation and post-processing.

Index Terms— Image copy-move forgery, similar but
genuine objects, scaled Harris feature descriptors

1. INTRODUCTION

Copy-move image forgery, as the most commonly occurring
forgery type, copies part of the image, and paste it into an-
other part of the same image. VariousCopy-Move Forgery
Detection (CMFD) methods have been proposed, which can
be categorized as block-based and key-point-based matching
methods. The first block-based CMFD algorithm by Fridrich
[3], makes use of Discrete Cosine Transform (DCT) and
lexicographical order. Many improved DCT algorithms were
subsequently proposed [4, 5]. Muhammad proposed a passive
method based on Dyadic Wavelet Transform (DyWT), which
combined approximation and detail subbands [6]. In addition,
some algorithms focus on dimensionality reduction, such as
Principal Component Analysis (PCA) [7]. To keep geometric
transformation invariance, efforts have been devoted in recent
works, such as Fourier-Mellin Transform (FMT) [8], invariant
moment [9, 10], and Local Binary Patterns (LBP) [11]. On
the category of key-points based methods, Huang proposed

CMFD algorithm based on Scale Invariant Feature Transform
(SIFT) [12], and subsequently, SIFT-improved approaches
are proposed[1, 13]. Speeded-Up Robust Feature (SURF)
was applied for improving computational efficiency by Xu[2]
and Shivakumar [14]. Furthermore, some other methods
based on DAISY descriptor [15] and Harris points[16] are
recently proposed.

Existing CMFD methods devote to finding similar areas
to locate tampering, while ignoring that most realistic scenes
are likely to containSimilar but Genuine Objects (SGO).
With such ambiguity, the performance of CMFD usually de-
grades when applying to image with SGO. In this work, we
proposed a novel CMFD method usingScaled Harris Fea-
ture Descriptors (SHFD), which performs consistently well
and is robust to images containing SGO. Fig.1 illustrates an
example of CMFD performance degradation using SIFT [1]
and SURF [2]. Whereas the proposed SHFD method demon-
strates promising results. Some important features of our
work are as follows,

1. Key points are extracted using scaled Harris features,
which are scaling invariant. Orientation is assigned to
the neighborhoodof each key points, in order to achieve
rotational invariance.

2. SHFD performs consistently well for images with
naive, rotation, scaling and free-form distortion tem-
pering. Empirically, it outperforms SIFT and SURF
methods for images from COVERAGE database[17].
Furthermore, SHFD is robust to post-processing in-
cluding blurring, noise, and jpeg compression opera-
tions.

2. PROPOSED METHOD

There are four main steps in our proposed SHFD algorithm:
Scaled Harris points extraction (Section 2.1), Orientation as-
signment (Section 2.2), features extraction (Section 2.3)and
feature matching (Section 2.4).

http://arxiv.org/abs/1601.07262v1


Fig. 1. Top and bottom: exemplar results of SGO and copy-move forgery images. From left to right: (Column 1) Original
and tampered images, (Column 2-4) the results based on SIFT[1], SURF[2] and SHFD. The green and blue points in column 2
respectively indicate two clusters, the red lines denote two matching points.

2.1. Scaled Harris points extraction

Detecting locations that are invariant to scale change of the
image can be accomplished by searching for stable features
across all scales, using a continuous function of scale known
as scale space. The pyramid scale space [18] is the most use-
ful model to achieve scale invariance, where octave and inter-
val are used for multi-resolution analysis and image continu-
ity maintenance. Since Harris [19] is a classical way to extract
corner points with none scale invariance, scaled Harris points
are built in our approach by combining pyramid scale.

The pyramid intervals are obtained by Gaussian smooth-
ing and sub-sampling is used to build octaves. For given im-
ageI(x, y), the intervals in the same octave are given by:
L(x, y, σ) = I(x, y)∗G(x, y, σ), and the first interval of next
octave isLoc(x, y, σ) = sampling(Loc−1(x, y, σ), β). Where
G(x, y, σ) is Gaussian blur,sampling is the function of down
sampling,σ andβ is the scale and sampling factor.

Harris points are classified by using eigen values,λ1 and
λ2 of the second moment matrixM(x, y) as:

M(x, y) =

[

Ix(x, y)
2 Ix(x, y)Iy(x, y)

Ix(x, y)Iy(x, y) Iy(x, y)
2

]

(1)

whereIx(x, y) and Iy(x, y) respective represents pixel
gradient in thex andy direction at point(x, y). If λ1 ≈ λ2

andλ1λ2 ≫ 0, the point(x, y) is considered as a corner point.
Therefore, corner response can be measured by the following:

CR = det(M)− k(tr(M)2) (2)

wheredet(M) = λ1λ2 = I2xI
2

y − (IxIy)
2, tr(M) = λ1 +

λ2 = I2x+I2y , andk is the weight value,t {CR} is the thresh-
old value. In our method, the scaled Harris key points are
extracted on every scaleL(x, y, σ) .

2.2. Orientation assignment

To achieve rotation invariance, the most important issue lies
in locating the correct neighborhood region. Based on this,
the orientation of each key point is a way to help find same
region. In our approach, the oriented gradient is used to as-
sign orientation for the neighborhood of each key point. The
gradient magnitude and orientation, denoted asm(x, y) and
θ(x, y), are computed on their octaves by using pixel differ-
ences as shown in the following equations:

m(x, y) =
√

∆L2
x +∆L2

y (3)

θ(x, y) = tan−1(∆Ly/∆Lx) (4)

where∆Lx = L(x+1, y)−L(x−1, y),∆Lx = L(x, y+
1) − L(x, y − 1). And then, through dividing[0, 2π] to ten
regions and getting the histogram of gradient, the maximal
magnitude is the orientation of point(x, y). The rotation in-
variance neighborhood region of point(x, y) is given in the
following equation:

[

x̃
ỹ

]

=

[

cos θ − sin θ
sin θ cos θ

] [

x
y

]

(5)

where

[

x
y

]

represent pixels in a 4×4 square neighborhood

among the center(x, y),

[

x̃
ỹ

]

are the coordinates of oriented

region, andθ is the orientation of key point(x, y).

2.3. Feature descriptor extraction

Accurate feature descriptions are able to capture the weeny
image details are the key of robustness on SGO. Local Binary



Patterns (LBP) is an effective texture feature descriptor due
to its low computational complexity, invariance to monotonic
gray-scale changes and texture description ability[20]. Be-
sides, DCT is a well known sparsifying transform for image
regions where information is highly concentrated in its low-
frequency component. Additionally, Singular Value Decom-
position (SVD) is the tool commonly used in the dimension-
ality reduction methods. Therefore, coefficients in the DCT
domain, and singular values of the image data are good fea-
tures which are robust to noise and interference.

In our method, SupposeM is the neighborhood region
of point (x, y), which is a 4×4 square matrix. Uniform
LBP (LBPu2

P,R) and the rotation invariant uniform LBP
(LBP riu2

P,R ) keep the rotation invariance through starting from
minimum LBP value and remove the redundancy, whereP
is the number of pixels in neighborhood on a circle of ra-
dius R. DCT coefficient could be extracted fromM and
reshaped as a vectordct with dimensions of 16. The di-
agonal entries of singular matrixM in descending order
are recorded as SVD vectorssvd. In total, the descrip-
tor of point (x, y) is presented with four feature vectors
V = [V1(LBPu2

8,1), V2(LBP riu2
16,2 ), V3(dct), V4(svd)] with

dimensions of 93(V1(59) + V2(14) + V3(16) + V4(4)).

2.4. Feature matching

Since the next octave is the down sampling by factorβ, the
equation of mapping the Harris point(x, y) to original image
(X,Y ) is:

X = x× (1/β)oc−1, Y = y × (1/β)oc−1 (6)

If Euclidean distances of every mixed feature are less than
the thresholdǫ, the point pairs(i, j) are regarded as candidate
matching pairs. After this we obtain the matrix of matching
pairs, recorded as follows:

match(i, j) = [(Xi, Yi), (Xj , Yj)] (7)

Since there is a significant amount of false matches, a way
of removing false matches is applied. RANdom SAmple Con-
sensus (RANSAC)[21] is an iterative method to remove false
matches. In our method, RANSAC evaluates a translation
matrix model on the datasetmatch(i, j) and removes false
matches that are not compatible with it.

Fig. 2. From left to right: ROC curves respect to tampering
factors and COVERAGE database.

3. EXPERIMENTS

3.1. Database

We evaluate the proposed SHFD algorithm, as well as popu-
lar SIFT[1] and SURF [2] methods over the newly proposed
COVERAGE database [17]. The original images of the
forgery pairs from COVERAGE all contain SGO. The se-
lected images are forged with 6 different tampering factors,
respectivelynaive, rotation, scaling, illumination, free-form
distortion andcombined factors.

3.2. Parameters and Metrics

The input parameters required by the methods are set as fol-
lows: oc = 4 (number of pyramid octaves),in = 4 (number
of pyramid intervals),β = 1.25 (sampling factor in pyramid
space),t {CR} = 0.02 ∗max(CR) (threshold for the corner
response) andk = 0.05 (weight in corner response).

To evaluate the performance of CMFD on images with
SGO, true positive rate (TPR) and false positive rate (FPR)
are used as evaluation metrics. They are defined as follows,

TPR =
#image detected as forgery being forgery

#forgery images
(8)

FPR =
#image detected as forgery being origin

#origin images
(9)

3.3. Numerical Results

In this part, we compare empirical performance using the pro-
posed SHFD algorithm to popular CMFD methods, includ-
ing SIFT [1], and SURF [2] algorithms. We present and an-
alyze the numerical results with different tampering factors
and post-processing methods.

3.3.1. Performance on tampering factors discussion

To minimize the visible traces of forgery, various types of
tempering factors are applied in the forged image. We now
analyze how CMFD performances varied with different tem-
pering factors. We evaluate TPR and FPR values by apply-
ing SHFD algorithm to 100 images from COVERAGE. Fig.
2 in the left side illustrates ROC curves subject to different
tampering factors. Empirically, our proposed SHFD algo-
rithm performs consistently well for images withnaive, ro-
tation, scaling andfree-form distortion tempering. However,
we also observed reasonable performance degradation for im-
ages with complicated tempering factors such asillumination,
andcombined factors. More sophisticated features which im-
pose illumination variance are required to handle more com-
plex tempering factor in the future work.

To compare the proposed SHFD method to the popular
SIFT and SURF methods, we also evaluate TPR and FPR
values using SIFT[1], and SURF [2] methods over COVER-
AGE database. The overall ROC curves are plotted in the



Fig. 3. From top to bottom: Exemplar results of two SGO and one tampered images varying with respect toblurring, noise
andjpeg compression. From left to right: (Column 1) tested images, (Column 2-4) the results based on SIFT[1], SURF[2] and
SHFD.

Fig. 4. From left to right: ROC curves varying with respect toblurring, noise andjpeg compression

right of Fig.2. The empirical results obtained by the proposed
SHFD method demonstrate promising performance compared
to SIFT and SURF methods.

3.3.2. Post-processing experiments

It is important to study the CMFD behavior subject to post-
processing operations such as blurring, noise corruption and
JPEG compression, since similar effects usually occur dur-
ing image transmission and processing. We now artificially
edit images from COVERAGE databases with operations in-
cluding Gaussian blurring (window size,w = 3, and sigma,
σ = [0.5, 1, 2]), Gaussian noise corruption (mean,m = 0,
and variance,var = [1, 3, 5]) and JPEG compression with
a decreasing quality factor of[80, 60, 40]. Fig.3 shows three
examples of processed images with blurring, noise corruption
and JPEG compression, as well as their CMFD matching re-
sults using SIFT, SURF and SHFD methods. The correspond-

ing ROC curves are plotted in Fig.4 with blurring, noise cor-
ruption and JPEG compression respectively. From the plot-
ted curves, we observe promising robustness of the proposed
SHFD method subject toblurring, noise, andjpeg compres-
sion operations.

4. CONCLUSIONS

Detecting images with SGO and copy-move is a common is-
sue in CMFD. However, it is often overlooked in existing
methods. In this paper, an efficient method called SHFD
was proposed and evaluated against two state-of-art meth-
ods. The results show that SHFD is the only one that could
distinguish images with SGO and copy-move forgery. Fur-
thermore, it also determines the geometric transformations
and post-processing applied to the forged regions. However,
our method preforms unsatisfied in the illumination variance,



which will be continued to work in the future study.
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