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Abstract

Assessing the visual realism of images is increasingly
becoming an essential aspect of fields ranging from com-
puter graphics (CG) rendering to photo manipulation. In
this paper we systematically evaluate factors underlying hu-
man perception of visual realism and use that information to
create an automated assessment of visual realism. We make
the following unique contributions. First, we established a
benchmark dataset of images with empirically determined
visual realism scores. Second, we identified attributes poten-
tially related to image realism, and used correlational tech-
niques to determine that realism was most related to image
naturalness, familiarity, aesthetics, and semantics. Third, we
created an attributes-motivated, automated computational
model that estimated image visual realism quantitatively. Us-
ing human assessment as a benchmark, the model was below
human performance, but outperformed other state-of-the-art
algorithms.

1. Introduction
Visual realism is defined as the degree an image appears

to people to be a photo rather than computer generated. Pre-
dicting image visual realism is a challenging yet important
task for the visualization and CG communities. For instance,
image realism could be used as a metric for CG image qual-
ity evaluation or during manipulation of the realism level
of computer games. Image realism could also be integrated
into content-based image retrieval and image forensics.

Over the last decade, some noteworthy research has pro-
vided a base for understanding visual realism. In the CG
community, scholars have analyzed the impact of render-
ing parameters like illumination and shadow on how similar
a CG image is to reality, i.e., its CG fidelity [17, 21]. In
the computer vision field, much research has been devoted
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Figure 1. Image type may not indicate visual realism – photos
may appear unrealistic whereas CG images can appear very real.
Above are images of different realism levels from our visual re-
alism dataset. Half of the images in each row are CGs, half are
photos. The number in parentheses represents the realism score
(the proportion of participants who rated the image as a photo rather
than as CG).

to detecting and improving the realism of composite im-
ages [14, 28]. However, we are unaware of any research that
has systematically analyzed the perceptual factors relevant to
the visual realism of images of general scenes, and how these
perceptual factors could be turned into a quantitative realism
estimation problem. Current datasets in related fields only
contain labels of image type, with no ground truth on realism
score. Therefore they are not suitable for quantified realism
assessment. Besides, there is no set of unified evaluation
criteria for such a quantitative estimation.

Our research differs from previous work in computer
vision on image-type classification. Our method is realism-
centric, focusing on estimating the realism level of individual
images regardless of their types (Fig. 1). In this paper, we
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Figure 2. Sample CG images (top) and photos (bottom) from our dataset distributed based on degree of realism. The numbers on the bar
represent realism score (the proportion of participants who rated the image as a photo rather than as CG).

develop a computational approach to realism estimation that
incorporates factors empirically related to human realism
assessment. The paper has three goals. First, to construct a
unified benchmark dataset for quantitative realism estima-
tion (Sec. 2). Second, to explore the high level attributes
related to visual realism of images (Sec. 3). Third, to de-
velop a model rooted in machine-learning for automatically
inferring realism of images using their visual content, and to
assess model performance in terms of the degree to which it
matches human performance (Sec. 4).

1.1. Related work

CG fidelity: Since the early 1980’s, research has explored
CG fidelity [17, 21]. A common approach has been con-
trolled experiments in which participants judge between a
real scene and its CG replica generated with different param-
eter settings. Recent work [7] showed that realism perception
of face images is related to intrinsic image components such
as shading and reflectance as well as cognitive factors such
as viewers’ expertise and ethnicity. However, these studies
were conducted using datasets limited by specific scenes and
small sample sizes. The current work included additional
visual factors and other image attributes important to visual
realism. We based our study on a large-scale dataset with a
variety of scenes.

Image type classification: Computer vision researchers
tend to focus on how to classify images as photos or CG
based on various image characteristics, such as higher-
order wavelet statistics [16], physics-motivated geometry
features [19], and physical noise rendered by cameras [5].
However, these methods are not directly rooted in human
perception, which is an essential contrast to our approach.
Although these algorithms developed apart from consider-
ing human perception can often reach high classification
accuracy, the features used are usually sensitive to such im-
age manipulations as compression and post-processing. Our
work on visual realism differs fundamentally from the pre-
vious photo-vs-CG classifiers in three ways: first, visual

realism is perceptual; image type is not. Second, realism
scores range from 0 to 1, whereas photo-vs-CG is a binary
distinction. Image type does not necessarily indicate im-
age realism level, and vice versa (Fig. 1). Third, our study
included matte paintings, which are hybrid images charac-
terized naturally by visual realism but not by image type as
photo or CG.
Image composites evaluation: Some studies have focused
on understanding and assessing realism of composite im-
ages [14, 28]. Evaluation of various image statistical mea-
sures has indicated that the most important factors for realism
of composite images are illumination, color, and saturation.

2. Visual realism benchmark dataset
We established a benchmark dataset based on quantitative

measures of the visual realism of each image. Visual real-
ism scores were collected from a large-scale psychophysics
study on Amazon Mechanical Turk (MTurk). The following
section describes the assembly of the dataset and the study.

2.1. Dataset construction

The dataset consists of 2520 images, among which half
are photos and half are CG images. Sample images and
dataset statistics are shown in Fig. 1, 2 and 3.

A good dataset should reflect the types of images we
encounter in daily life. However, digital technology has
advanced sufficiently that hybrid images whose image type
is difficult to determine have become common. For instance,
digital matte painting (MP) images are now common in
movies. Digital MP images are often composed of a CG
image superimposed on a base plate (a photo or moving
footage; Fig. 4). Our dataset differs from others in related
fields in that it includes digital MP images. We selected
those for which over 1/3 of their area was CG.

We excluded CG images with unrealistic content, like
spaceships flying in a city. Obviously unrealistic CG images
like cartoons were also excluded. All images were scaled
and cropped about their centers to be 256×256 pixels.



Figure 3. A depiction of the variation across our visual realism
dataset. Each bar is labeled by variety-category (leftmost labels).
Within each category, different specific features, labeled above the
sub-bars, apply to CG images versus photos (except the last two
rows). Sub-bar lengths represent proportions. In the first category,
high realism, medium realism, low realism indicate realism scores
between the ranges of (.67, 1], (.33, .67], [0, .33], respectively.

Figure 4. An example of digital matte painting. Left: Final matte
painting. Right: Original image before applying matte painting.
Courtesy of Matte World Digital, CA.

2.2. Psychophysics study I: perceptual realism

Study design: We had workers on MTurk view a sequence
of images and judge each as “CG” or “photo”. We defined
CG images as entirely or in part created using computer
software. To estimate how diverse our participants were
regarding prior familiarity to CG images and photography,
we asked participants to select one or more options that
best fit their background from “have jobs related to graphic
design”, “keen computer game players”, “photographers
or photography enthusiasts”, and “laypersons”. We paid
workers $1.00 for completing the task, and to encourage
participants to try their best we paid a $0.20 bonus to workers
whose accuracy exceeded 90%.
Empirical realism score: We performed a pilot study to
determine how many participants are necessary to provide
sufficient reliability for visual realism assessment. Split-half
correlations and root mean square error analysis suggested
that 30 judgments per image is enough (for details see supple-
mentary material [1]). Based on the pilot study, we recruited
1292 participants from MTurk (for all studies we required
workers to have > 95% approval rating in Amazon’s sys-
tem). Each image was judged by a mean of 31 participants.
We calculated a realism score (ranges from 0 to 1) for each
image as the proportion equal to the number of judgments

indicating that the image is a photo over the total number of
judgments for that image. The distribution of realism scores
and sample images of different realism levels are shown in
Fig. 3, and 2, respectively.

2.3. Dataset statistics

We wanted our findings to generalize to the various types
of images people often see. We also hoped the computational
model built on the dataset could be generalizable in terms of
image type, realism level, and image content. So significant
diversity in images is important. Fig. 3 summarizes the
statistics of our dataset. For more detailed information of
our dataset, users could refer to our project website [1].

3. Measuring attributes and visual realism
In order to assess images’ visual realism by constructing

a computational model similar to human perception, we
first investigated image attributes relevant to people’s visual
realism perception and modeled visual realism empirically.

3.1. Psychophysics study II: attributes annotation

We recruited a new group of 3794 MTurk participants
to annotate the images (Table 1; for complete questionnaire
see supplementary material [1]). On average, 10 participants
annotated each image. We also had images labeled via La-
belMe [23], an online annotation tool (a31−32 in Table 1).
Due to budget constraints, these tasks were done for half of
the entire image set. These 1260 images, which we refer to
as the annotated subset, were selected so they had realism
scores distributed as uniformly as possible for both photos
and CG images, over the entire realism score range.

3.2. Correlation of attributes and visual realism

We measured and investigated the relationships between
image attributes and visual realism by using the realism
scores we got in Study I (Sec. 2.2) as ground truth. We
used the Spearman’s rank-order correlation (ρ) and one-way
ANOVA [22] to assess such relations (see Table 1 and Fig. 5).

Realism ratings: We asked participants to rate the degree to
which images appeared to be a photograph versus computer
generated (a1) on a five-point scale (1 = computer generated,
5 = photograph). These ratings strongly correlated with the
human realism scores we got in Study I (ρ = .80). The partic-
ipants for the two tasks were different, so this demonstrates
the stability of human perception of visual realism over both
measurements.
Familiarity: Familiarity attributes (a2, a4−5) correlated sub-
stantially with realism (ρs = .23, −.33, −.36, respectively).
This might be because people obtain greater capacity for as-
sessing image realism from prior exposure to similar scenes.
Consistent with this, previous research suggests that people
have specific memories of common objects entities such as



Table 1. Image attributes (Attr), related survey item, attributes category, and their Spearman’s rank correlations (ρ) with ground truth image
realism scores (from Study I). Meaningful and statistically significant correlations (|ρ| > .15, p < .05) are highlighted in bold. Numbers in
parentheses are participants’ mean ratings for each attribute standardized to a scale of 0 to 1.

Attr Survey item Category ρ Attr Survey item Category ρ

a1 Appears to be a photograph? ( .68) Realism .80* a21 Clean scene and objects? ( .83) Layout .07*

a2 Familiar with the scene? ( .60) Familiarity .23* a22 Makes you happy? ( .60) Emotions .08
a3 Familiar with the objects? ( .76) Familiarity .15* a23 Makes you sad? ( .08) Emotions -.10
a4 Unusual or strange? ( .28) Familiarity -.33* a24 Exciting? ( .56) Emotions -.16*

a5 Mysterious? ( .32) Familiarity -.36* a25 Contain fine details? ( .58) Texture -.03
a6 Lighting effect natural? ( .74) Illumination .49* a26 Dynamic scene? ( .33) Semantics -.15*

a7 Shadows in the image? ( .60) Illumination -.15* a27 Is there a storyline? ( .43) Semantics -.25*

a8 How sharp are the shadows? ( .37) Illumination -.07* a28 Contain living objects? ( .36) Semantics .06
a9 Color appearance natural? ( .82) Color .47* a29 Naturalness of objects? ( .77) Semantics .36*

a10 Colors go well together? ( .88) Color .15* a30 Object combinations natural? ( .76) Semantics .20*

a11 Colorful? ( .53) Color .05 a31 Number of unique objects ( .60) Semantics -.09*

a12 Image quality ( .69) Quality .04 a32 Total number of objects ( .72) Semantics -.06
a13 Image sharpness ( .72) Quality .10* a33 Number of people ( .49) Human semantics -.08
a14 Expert photography? ( .57) Aesthetics .33* a34 Face visible? ( .18) Human semantics .24*

a15 Attractive to you? ( .69) Aesthetics .03 a35 Is the person attractive? ( .35) Human semantics -.12
a16 Close-range or distant-view? ( .63) Layout .04 a36 Making eye contact with viewer? ( .12) Human semantics .13
a17 Have objects of focus? ( .71) Layout .00 a37 Posing for the image? ( .22) Human semantics -.10
a18 Neat space? ( .70) Layout .10* a38 Human activities ( .48) Human semantics .01
a19 Empty space? ( .48) Layout .01 a39 Human expressions ( .40) Human semantics .03
a20 Perspective natural? ( .75) Layout .33* a40 Expression genuine? ( .43) Human semantics .38*

* p < .05.

Figure 5. Distribution of realism R of images with respect to lighting naturalness L (a), color naturalness C (b), degree of expert photography
E (c), unusualness U (d), mysteriousness M (e), and degree of having a storyline S (f). Also shown are example images that demonstrate
such correlations (e.g. the left image in (f) shows an image that does not seem to have a storyline, but is more realistic). In the left graph of
each set, the black line stands for y = x (first row) or y = 1− x (second row), the red line is the linear regression line of all image points.

the sky or skin. Therefore an image may look more natural
or realistic if the coloring of image entities coheres with
memory representations [14, 3].

Color: Color naturalness (a9) moderately correlated with
realism (ρ = .47), which is consistent with previous find-
ings on image composites [14, 28]. However, there was
no significant correlation between colorfulness (a11) and
realism, which contrasts with [3], who found that colorful-
ness was a key attribute to image naturalness. This may
imply that image naturalness and image visual realism are
not based on entirely the same perceptual processes. In
previous studies, naturalness was defined as the degree of
correspondence between an image presented on an imaging
device and memories of real-life scenes [3], whereas we

define visual realism as the degree to which an image ap-
pears to be a photograph versus computer generated. As seen
from their distinct definitions, naturalness and visual realism
have intrinsic differences in terms of evaluation criteria and
perceptual process.

Illumination: The naturalness of lighting (a6) correlated
moderately with realism (ρ = .49), suggesting the impor-
tance of illumination for realism. This accords with previous
research which suggests that image properties like illumina-
tion, shadow, and surface roughness are important factors for
CG fidelity [21, 7]. However, we did not observe meaning-
ful correlation between shadow characteristics (a7−8) and
realism. This contrasts with prior research suggesting that
shadow softness is an important factor for CG fidelity [21].



This difference might be because [21] used images of sim-
ple objects, while our images consisted of varied scenes,
entailing more complex and varied shadowing effects. Al-
ternatively, whereas [21] used a fixed viewing environment
and rendering parameters, ours were uncontrolled.

Aesthetics: The degree to which an image appeared to be
a work of expert photography (a14), an aesthetics attribute,
moderately correlated with realism (ρ = .33). Interestingly,
this correlation was negative (ρ = −.23) for images with
realism scores greater than 0.8. This might suggest that
more aesthetics in a highly realistic image can lower its
realism. This is consistent with prior research on human skin
rendering [8], which suggests that maximal attractiveness
and extreme realism were opposing perceptions. Despite
the somewhat non-linear relationship between aesthetics
and realism, we still used linear regression for simplicity.
Modeling the non-linear relationship is left to future work.

Spatial layout: We found that the naturalness of perspective
(a20) influences realism (ρ = .33). This has been noted in
the CG community by [6], who investigated the impact of
viewpoint on apparent realism of virtual crowds.

Semantics: The naturalness of object appearances (a29)
and of object combinations (a30) both correlated moderately
with realism (ρ = .36, .20, respectively). However object
statistics (a31−32) did not appear to influence realism. This
accords with [21], who showed that the number and diversity
of objects have minimal influence on realism. The amount
of semantic information an image conveys (a27) negatively
correlated with realism (ρ = −.25), suggesting that explicitly
dramatic scenes appear less realistic. We performed one-way
ANOVAs to investigate the effect of scene and object type
on visual realism (for detailed categories see Fig. 3). Results
suggested a significant effect of scene and object types on
realism, Fs(12, 2507) > 4.81 , ps < .05.

3.3. Empirical visual realism model

We used feature selection and multiple regression to deter-
mine which factors most influenced visual realism. Finally,
image visual realism was modeled by the major factors based
on the psychophysical data.

Feature selection: We used the attributes as features for
training support vector regressor (SVR) [2] to predict image
realism. We used grid search to select cost, RBF kernel pa-
rameter γ, and ε hyperparameters. We split the 1260 images
from the annotated subset into 80% as a training set and
20% as a test set. We performed a greedy feature selection.
The prediction performance was evaluated using Spearman’s
rank coefficient between predicted realism scores and human
realism scores (from Study I). As shown in Fig. 6, perfor-
mance improved with more attributes, but improved little
with more than 10 attributes. Therefor we selected the 10 top
attributes for modeling visual realism. Some attributes with

small correlations with realism individually had stronger cor-
relations jointly (Fig. 6), such as attractiveness (a15), image
quality (a12), and presence of living objects (a28).

Figure 6. Feature selection results. Left: Spearman’s rank correla-
tion between predicted realism score and human realism scores as a
function of the number of predictor attributes. Right: Independent
prediction performance of top 10 attributes.

Principal component factor analysis: Several attributes
from feature selection were correlated, such as mysterious-
ness and strangeness. We performed a principal component
(PC) factor analysis with varimax rotation [22] to remove
the high inter-correlations and identify a compact set of at-
tributes related to realism. The 10 attributes from feature
selection were grouped into 4 major PCs based on factor
analysis, which most strongly correlated with naturalness,
aesthetics, familiarity, and semantics, respectively (Table 2).
The “Cumulative variability” row shows that the 4 PCs ac-
counted for nearly 65% of the variability in the 10 attributes.
Multiple regression: Finally, PC scores were computed as a
weighted average of the 10 attributes (with factor loadings as
weights). We predicted realism scores with these PC scores
using multiple regression, adjusted R2 = .44, p < .001. Seen
from Table 3, naturalness strongly predicted realism, while
aesthetics, familiarity and semantics weakly but significantly
predicted realism. The relative predictive ability of this statis-
tical model is consistent with the computational performance
of each component presented in Sec. 4.2 (Table 4).

Table 3. Principal components, their standardized coefficients (β),
t value, and significance (p) in multiple regression with realism.

Component β t p
Naturalness .63 29.98 .000
Aesthetics .14 6.53 .000
Familiarity -.11 -5.19 .000
Semantics -.12 -5.54 .000

4. Computational visual realism
We designed features motivated by image attributes rele-

vant to visual realism. We built a computational model for
quantitative realism assessment based on these features. We
also compared our model with state-of-the-art algorithms
using human realism scores as a benchmark.

4.1. Image features for visual realism

Based on our psychophysics studies, visual realism corre-
lated strongest with naturalness, aesthetics, familiarity, and



Table 2. The loadings of 10 selected attributes on the 4 major principal components (PC). Bold numbers are the strongest loading of each
attribute on one of the PCs. The “Cumulative variability” row shows how each PC cumulatively explains the variability of 10 attributes in
presented sequence.������������������Attributes

Principal components
1 (Naturalness) 2 (Aesthetics) 3 (Familiarity) 4 (Semantics)

Naturalness of color appearance (a9) .88 .13 -.19 .03
Naturalness of lighting effect (a6) .87 .20 -.17 .02

Image quality (a12) .06 .79 -.03 -.05
Attractiveness (a15) .10 .74 -.20 .18

Expert photography (a14) .44 .67 -.02 -.10
Unusualness/strangeness (a4) -.07 -.07 .71 .03

Mysteriousness (a5) -.10 -.03 .71 .19
Objects familiarity (a3) .27 .17 -.64 .21

Containing living objects(a28) .10 .00 -.16 .78
Having storyline (a27) -.08 .03 .31 .71

Cumulative variability explained (%) 18.41 35.53 52.03 64.36

semantics. We identified automated methods to determine
feature values that corresponding to these attributes. Instead
of simple concatenation, we applied kernel sum to fuse the
features for support vector regression.

Naturalness: We modeled image naturalness in three ways.
First, [7] suggested that shading and reflectance affect visual
realism differently. This inspired us to model naturalness
using intrinsic image components. We first decomposed
each image into intrinsic components by extending Retinex
algorithm into RGB space [9]. We then computed three
256-bin histograms for each image, to represent shading and
reflectance components as well as original image. We further
calculated the histogram difference between the intrinsic
components and original image. Second, based on [25]
we calculated the image naturalness statistics derived from
the local patch (3×3) structures and image power spectrum.
Finally, unnaturalness was modeled by using the method in
[10], who identified simple and uniform color, and strong
edges, as characteristics of CG.

Aesthetics: We applied Ke’s method [11] for extracting
aesthetics features, which considers image properties like
edges distributions, blur, and contrast. We also used local
self-similarity geometric patterns (SSIM [24]) to represent
content symmetry, which is often regarded as a measure of
aesthetics. We densely sampled the SSIM descriptors with a
grid spacing of 4 and learned a dictionary of size 100. We
used 2-level spatial pyramid pooling on the descriptors.

Familiarity: First, we defined a measure for semantic fa-
miliarity using the content-based similarity measure com-
monly used in image retrieval. We used 10, 000 images from
the SIMPLIcity dataset [27] as a pre-determined anchor
database of images with common scenes and objects. We
then computed the image similarity by using color, illumi-
nation and texture information [13], and performed a robust
content-based matching with the anchor database. Primarily

meant for image retrieval applications, we used it here to
quantify familiarity. The familiarity measure was denoted
by the distances of the top 50 matches. Second, [14, 3] sug-
gested that an image may look more realistic if its coloring
coheres with memory representations. We included color
compatibility [14] as a measure for color familiarity. We
also included color name features learned from real-world
images [26] to better represent daily color compositions. We
densely sampled the feature with a grid spacing of 4 and
learned a dictionary of size 256. We then applied 2-level
spatial pyramid pooling to obtain the color descriptors.
Semantics: We applied GIST [20] to model scene structure
using 4×4 image block. We used automatic Object Bank
(OB) [15] to model presence of a pre-defined set of objects.
In OB, an image is represented as a collection of response
maps of a large number of pre-trained generic object detec-
tors. We used max pooling on OB features.

4.2. Results and evaluation

Evaluation methods: We evaluated our method by its abil-
ity to predict realism scores. As a simple application, our
model was also evaluated in classifying images as photos
or CG. For prediction, we used human realism scores from
Study I as ground truth, and Spearman’s rank correlation to
evaluate the prediction performance from SVR. For classi-
fication, image-type labels were used as ground truth, and
area under ROC curve as evaluating measure (where realism
scores from SVR were treated as image-type probability,
high realism scores correspond to photo and low correspond
to CG). The SVR settings are as described in Sec. 3.3.

Evaluation results: In Table 4 and Fig. 7, we compared
performance of various computational methods, as well as
human judgment and attributes annotation that motivated our
features. For human judgment, we treated human realism
scores from Study I (Sec. 2.2) as image-type probability in



Table 4. Experimental results of realism prediction and image classi-
fication. ρ1 and A1 are respectively the Spearman’s rank correlation,
and area under ROC curve on annotated subset, ρ2 and A2 are those
on whole dataset1. The best result from computational features on
each evaluation metric is highlighted in bold.

Category Feature type
Prediction Classification
ρ1 ρ2 A1 A2

Human Human .652 n.a. .79 .88

Attributes
annotation

Naturalness .52 n.a. .62 n.a.
Aesthetics .39 n.a. .64 n.a.
Familiarity .39 n.a. .57 n.a.
Semantics .30 n.a. .61 n.a.

All combined .66 n.a. .67 n.a.

Our
method

Naturalness .38 .45 .66 .74
Aesthetics .34 .42 .65 .73
Familiarity .33 .42 .64 .74
Semantics .28 .37 .61 .67

All combined .41 .51 .68 .77

Signal
feature

Wavelet [16] .16 .20 .56 .63
Geometry feature [19] .31 .47 .64 .74

Camera noise [5] .04 .06 .53 .50
Color compatibility [14] .20 .23 .57 .61

Object &
scene feature

SIFT [12] .28 .34 .61 .66
GIST [12] .16 .23 .58 .61

HOG2x2 [12] .28 .33 .58 .66
LBP [12] .25 .30 .59 .64

Feature
learning

K-means
encoding [4]

.28 .37 .63 .71

1 Results are consistently better on whole dataset than annotated subset.
It might be because the images in the subset was purposefully selected
to make a uniform distribution on realism scores. Thus these images
are intrinsically harder to be distinguished.

2 This result is the split half consistency among participants for study II.

Figure 7. ROC curve of binary image classification on whole dataset.
Our method outperforms other computer algorithms, yet is still far
below human performance.

classification tasks. For attributes annotation, we grouped the
10 selected attributes in Sec. 3.3 into 4 components (defined
in Table 2) and used them as training features for SVR. The
attributes annotation was only on the annotated subset, so
for comparison we tested all computer methods on both the
whole dataset as well as the annotated subset.

We also compared our method with the signal process-
ing features commonly used in CG and photo classification,

which include high-order correlations of wavelet coefficients
[16], physics-motivated geometry structure [19], camera
noise [5], and color compatibility for evaluating the real-
ism of image composites [14]. We further tested some well
known object and scene features like SIFT, GIST, HOG2x2,
and LBP, computed from an open-source library [12]. Fi-
nally, we investigated unsupervised feature learning. We
adopted the unsupervised feature learning framework with
a single-layer triangular K-means encoding [4] on image
patches preprocessed by local intensity and contrast normal-
ization, as well as whitening. During test, we scan an image
with 16-by-16 pixel receptive field and 1 pixel stride, before
mapping the preprocessed image patches to 256-dimensional
feature vectors. The details on feature computation can be
found in our project website [1].

Our results suggest the following three things:
First, both attributes annotation and our features predicted

image realism moderately well (ρs > .28; Table 4). Among
the four factors, naturalness predicted best, which is consis-
tent with our regression model (Table 3), indicating natural-
ness is the most important factor among the 4 components.

Second, although the performance of our method was
lower than that of attributes annotation in prediction task,
our method slightly outperformed attributes annotation in
classification task (Table 4). This suggests that our attributes-
motivated features represent human annotation to a certain
degree.

Third, our combined features outperformed other com-
puter algorithms in all evaluation metrics, suggesting not
only that our method is the most similar to human perception,
but also that understanding human perception helps create
better computational models. The low performance of the
camera noise feature might be due to its sensitivity to image
compression and post-processing. Unsupervised learning
features were among the best, but humans performed the
best on both tasks.

Limitation: As seen from Fig. 8, our method overpredicted
realism for images with unusual scenes (including CG per-
sons), whereas it underpredicted realism for images that are
common scenes but with unusual illumination or image qual-
ity. This might indicate that one limitation of our method
is on scene understanding. Investigating scene semantics
might be fruitful. For example, we could fully utilize the
data collected from LabelMe or explore image context.

5. Conclusion

In this paper we have shown that predicting image visual
realism is a task that can be addressed with current com-
puter vision techniques. We constructed an image realism
benchmark dataset and designed a realism predictor moti-
vated by human-annotated image attributes. To the best of
our knowledge, this work is a first realism-centric study that



Figure 8. Samples of poorly predicted images by our method. The
number on the left under each image is the ground truth realism
score evaluated by humans (H), the number on the right is computer
predicted realism score by our method (C).

attempted to quantify visual realism of individual images.
We have shown a simple application of our realism predictor
on image classification. For future work, we will incorporate
our realism predictor for perception-based image retrieval
and computer graphics rendering. We also plan to develop a
web service for image realism prediction [18].
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